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We analyze the crumpled phases of self-avoiding two-dimensional polymerized membranes (tethered
membrane) in d dimensions with disorders, using a Gaussian variational approximation. We find that a
stress disorder, even a short-range one, is relevant in the crumpled phase at d <8 and alters the
behaviors of the membranes. We give the exponent for the radius of gyration in the crumpled phases
and find that the self-avoiding tethered membranes with short-range disorders can be in the crumpled
phase at d > 2 in contrast to the pure self-avoiding tethered membrane. We also give the phase diagrams
of the crumpled phases of the self-avoiding polymerized membranes with long-range disorders.

PACS number(s): 64.60.—1i

I. INTRODUCTION

There has been considerable interest in polymerized
(tethered) membranes with disorders. Mutz, Bensimon,
and Brienne [1] observed a phase transition in partially
polymerized membranes of diacetylenic phospholipids.
These membranes undergo a spontaneous transition to
the wrinkled and rigid structure upon cooling. This tran-
sition can be attributed to the spin-glass transition [1-3].
Nelson and Radzihovsky [4,5] and Morse, Lubensky, and
Grest [6] considered the phantom tethered membranes
with randomness by the field theoretical method
(e=4—D expansion). It was concluded that at T>0
weak short-range disorders have only negligible effect at
large scales and that the membrane remains in the pure
flat phase. This problem has been studied also in the
large d limit by Radzihovsky and Le Dousaal [7]. They
showed that for a large enough disorder strength the flat
phase at T >0 becomes unstable towards a crumpled-
glass phase. Another possibility is that a more drastic
type of disorder is needed to destabilize the flat phase. In
their work [5], Nelson and Radzihovsky pointed out that
unscreened disclinations would generate random stresses
with long-range correlations and destabilize the flat phase
at all temperatures. Using a self-consistent screening ap-
proximation, Le Doussal and Radzihovsky studied the
flat phases of randomly polymerized membranes with
long-range disorders [8]. Numerical simulation has been
carried out [9]. However, the self-avoidance cannot be
neglected in the physics of tethered membranes. For ex-
ample, numerical simulations [10—-19] showed that self-
avoiding tethered membranes are always flat and several
theoretical works were presented in order to explain this
phenomenon [20-22]. From this view point, we con-
sidered randomly polymerized membranes with long-
range interactions using the large d limit and discussed
the behaviors of the transition [23]. Making use of its re-
lation to the self-avoidance case, we presented a conjec-
ture that the self-avoiding randomly polymerized mem-
brane (d=3, D=2) is in the flat phase or in the
crumpled-glass phase. However, we neglected the fluc-
tuation of the spin-glass operator and, for the finite d
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case, this fluctuation becomes very important. In this pa-
per, we incorporate this fluctuation at the one-loop level
by using a Gaussian variational approximation and dis-
cuss the behaviors of the crumpled phases of the self-
avoiding randomly polymerized membranes.

The paper consists of the following. In Sec. II we
define our model and using the Gaussian variational
method we obtain the saddle point equations. We discuss
the saddle point equations with and without disorders.
The difference was not considered in our previous work
[23]. In Sec. III we obtain the large distance behaviors of
the membrane for several types of randomness by analyz-
ing the saddle point equations. We show that even a
short-range stress disorder is relevant at d <8 and the
crumpled phase exists at 2 <d <4. This means that the
self-avoiding polymerized membranes with short-range
stress disorder can be crumpled at the physical dimension
(d=3). We also obtain the phase diagrams of the crum-
pled phases of the self-avoiding polymerized membranes
with long-range disorders. Section IV contains summary
and concluding remarks. In the Appendix we discuss the
relevance of the self-avoidance in the flat phases of teth-
ered membranes in the Gaussian variational approach.
We complete the connection between the long-range
repulsive interaction case and the short-range self-
avoiding case.

II. FREE ENERGY AND VARIATIONAL METHOD

We consider a D-dimensional membrane in a d-
dimensional space. The position of the membrane is de-
scribed by d bulk coordinates X'(o%) (i=1,...,d),
where 0® (a=1,...,D) are the internal manifold coor-
dinates. We denote by u the strength of the “excluded
volume” interaction. The Hamiltonian for the general-
ized Edwards model is given by [24]
FX(0)]= [dPo 13, X3, X

+u [dP0 [dPo'8UX (o) ~X'(a") . @.1)

The first term corresponds to the Gaussian potential of a
free tethered manifold. In order to take into account the
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randomness of the stress and spontaneous curvature of
the manifold, we introduce random fields 8c(o) and
H'(o) [5] whose distributions are Gaussian. That is, in
Fourier space we have

(8c(g,)8c(g;)) 4is=4,(q,)8"(q, +q;)
—A"h ”SD(‘11+‘12)’ (2.2)
(H'(q,)H'(q,)) 4s=8;;8¢(q,)8"(q, +q;)
=8,Akq, X8%q,+qy) . (2.3)

Here ( ) denotes the average over disorders.
Then, we start with the following Hamiltonian:

FeulX(0)]= [dPo1d, X3,
+ [dPo[8c(0)8,Xd,X +H(0)AX']
+u [dPo [dPo'8%X (o)~ X'(0")) .
(2.4)
J

Frep=1 [ dPk K, ()X} (—K)X} (k)

ab—l

+3 u [dP0 [dPo'sUXi(0)—Xi(0") .

a=1

k28, —Ag(k)k*J,,, where J,, =

In the above, K, (k)=

The disorder-averaged effective free energy F.; is given
by the average of the logarithm of the partition function
Z y for each configuration of the randomness. We have
recourse to the replica formalism [25] and introduce n
copies of the fields X labeled by the replica index a. The
total Hamiltonian is the replicated version of the Hamil-
tonian (2.4),

total 2 7CH ] . (2.5)

a=1

We take an average of the replicated partition function

over the randomness to get the replicated Hamiltonian
7

rep?

- 7[0!3] > p— -7
dis

(e

where

2 fq kg kg =~k K, Dk dPk,d Pk d Pk A (@K Tk X, (k)X (ky)kEKEX](Kk3)X)(k,)

2.7

1 for all a,b. To calculate the effective free energy we use the

Gaussian variational approximation [20,26,27]. The method consists in choosing as a variational Hamiltonian the most

general quadratic form
FHoae=2% [[dPk Xi(—K)G 3 ()X} (k) .
That is, two-point correlation function is given by

<X¢;( _k)Xg(k)>var:8ijGab(k) ’

(2.8)

(2.9

where ( ),,, means the thermal average with the trial Hamiltonian (2.8). Then the effective free energy is given by [26]

1 .1 1
Fgeﬂ'z 31_13) ; z_p_< grep—ﬂvar>var_

%Tr InG,, (k)

) (2.10)

where L is the linear size of the membrane. It is easy to carry out this calculation to find

1 _d r d°% d 4%k, dPk,
F(grep ﬂvar)var_i_ TrlnG (k)_?f?éﬂ—)p'[Kab(k)Gab_'l]_—i_f(217_)D Q2 )D[nzA#(O)k%kgG(kl)be(kJ)]
d? d%k, dPk, R
S e G (2 0 Z 2K PGy o)
dr
———f TrlnG )df ) 2.11)

where K (o )is the two-point correlation function for the trial Hamiltonian,
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= i < - —vi 2
K(o)= 11_1130 El 2d<(X (0)—X0))?)ar
1 2 dPk
nson <7 27)P

[1—cos(k-0)]G (k) .

We now look for a replica symmetric solution

Gy (k)=gg(k)d,p +8aKM,y -

(2.12)

(2.13)

For later convenience, we introduce the following expression for the “bare” propagators:

K,y (k) =8, hy (k) —Jyha(k) .

(2.14)

With these propagators, the effective free energy is evaluated as

= [ k)= h (0 [gr K)+85 (k)1 + 5 g, (K (K a7k
o ),, [hg A(R)1[gx (k) +g4 (k)] gA< hatk) =< [

df dPk, dP’k
9=k +ky (277)P (277)P

d/2
u
+ d®
(27T)d f o

and the two-point correlation function K (o) reduces to
dPk
(2m)P

For disorder fluctuations [8] we also introduce the func-
tion L(o),

K(o)=[ [1—cos(k-0)][gx(k)+g,(k)] . (2.16)

=X ((xii—xi 2
L(o) <2d<(X(o) X(O))>>

dis

D
= (‘; I;D[l—cos(kv)]gA(k) . @.17)
m

Here ( ) means the thermal average. Note that the
second equality is correct only in the Gaussian variation-
al approximation. These two functions are characterized
by two exponents o and o: K(o)~Ay0® and
L(o)~ Ayo?

Taking the variational derivatives of (2.15) with respect
to gx(k) and g, (k) and setting the results equal to zero,
we find that

1 d>®
—=h—4 2L k—q)[(k—q)-k]?
L f(zﬂ)p W(9)8x (k—q)[(k—q)k]

galk) ]

2 gk (k)

(2m)P

: A#(q)(k,-kz)zi[g,((kl )+8alky)]gk(ky)+galky)]—galk)galksy)}

(2.15)

and
2 A+4f

The saddle point equation (2.18) is different from that of
the pure self-avoiding tethered membrane [20,21] by the
second term. This term comes from the stress disorder
term and, as we shall see below, we can also interpret it
as the contribution from the fluctuations of the spin-glass
operator in the short-range disorder case. We note that
these saddle point equations have essentially the same
structure as the integral equations studied in [8].

In the short-range disorder case, we can incorporate
the spin-glass phase. As in [7], we consider the ground
state X,

DA#(q)gA(k @l(k—q)k]*. (2.19)

aax,;',daﬁxg,c, =q8,60; (aFb) (2.20)
and fluctuations about the ground state
XHo)=X] 4(0)+8X (o) . 2.21)

The thermal average is calculated by use of the trial
Hamiltonian

d/2+1 =4 [ dPk(XI(—h) =X 4(—K))
S ddeo — ()32 . .
2(2m) K(o) 5 (X (k) —X] 4 (k) . (2.22)
X[1—cos(k-0)] (2.18) Then, we have
J
1 1 < D i i j j
2(~4 2 a.fdPoa.xisxiazxiopn)
a,b=1 var
n dPk, dPk
=—2d k%G, (k)— dA,Dg*—1d? [ — ——2[n2A KK2G,,(k,)G,,(k
a;&b . yqf(z )D b a¢§=l o q 2 f(Z‘ﬂ')D (277)D[n u™ 1839 gq 1) bb( 3)]
—1g? %k, d%; [2(k;ky)*G (K1 )Gy (k)] (2.23)
2 g=k +k2 (27T)D (27 )D yz 1 52 ab 1 ab\"™2 . .
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In this case, the saddle point equations are

1 d®
——=hg+20,qk*—4 [ LA g, (k—q)[(k—q)-k]>—
gk K uq f(Zﬂ')D pgK( q)[( q) ]

and

D
B b4 [ o n g (k=g (k=g k28,07
gK (27T)

(2.25)

From these calculations, we can identify the contribu-
tions from the stress disorder with the fluctuation of the
spin-glass operator. It is interesting to note that, except
for the contributions from the stress disorder, these sad-
dle point equations (2.24) and (2.25) are the same as those
of the randomly polymerized membrane with long-range
interactions [23].

III. SOLUTIONS
TO SADDLE POINT EQUATIONS

In this section, we restrict our interest to the two-
dimensional membranes in d dimensions and examine the
large distance (infrared) behaviors of K(o), L(0), gg(k),
and g, (k). We first study the crumpled phases of self-
avoiding tethered membranes with long-range disorders
and then the crumpled-glass phase (¢0) in the case of
short-range disorder.

A. Large distance behaviors of crumpled phases

To find the possible phases we analyze the saddle point
equations (2.18) and (2.19) through convergence criteria.
We assume the following forms of gg(k), g,(k), K(o),
and L(o) in the infrared limit:

gx(k) '~kokte
galk) I~ kok2te
K(o)~ Ayo?,
L(o)~Ayo?

The exponent o is related to the standard exponent v for
the radius of gyration (RZ~L?") by v=w/2. We then
have
2
[ Ak gt 1—cos(k-0)]~ 0 ,

2 2
(2m) (3.1)

2
[ aatol —costi-0)] =0 .
T

If a > a’, the thermal fluctuations take over disorder fluc-
tuations; K(o)~oc% and o=a hold. We name such a re-
gime a temperature-dominated phase [8]. On the other
hand, if a<a’, disorder fluctuations take over the
thermal fluctuations and two-point correlation function is
determined by the disorder fluctuations. That is,
K(o)~L(oc)~0% and w=a'. We call such a regime
disorder-dominated phase.  These suggest that

u
dD
202m)¢ f ‘

d/s2+1
(m)42[1—cos(k-0)]

K(o) (2.24)

f

o=max(a,a’). We now analyze the crumpled phases of
the membrane. We assume the following constraints on
the values of the above exponents:

O<w, w'<2, 0<a, a'<2. (3.2)

Inserting the dominant behaviors gg (k) '~k2*® and
galk) " !'~k2"% in the integrands, we find that

Z —a

I d’q_, (9)gx(k—q)[(k—q)k]2~k" ¥ 3.3)
(2m)2 IR ’

2 _z
9%9_p (ggak—qlk—qrk P~k T 34
(2m)

From the dominant behavior K (o)~ o®, we also find that
1+d/2
u 2 d/2
he(k)— d —_— ()
x(k) 2(21r)df 7 1k(0) i
X[1—cos(k-o)]~k*t% (3.5)
and
_ d
=—4+ 1+5 w=<2. (3.6)

The condition § <2 comes from the following. If 6>2,
the coefficient of the k* term on the left-hand side of (3.5)
becomes finite and the infrared behavior is ~k* [20],
which implies 6=2. From these considerations we deter-
mine the infrared behaviors, that is, w, a, and a’ of the
membranes in several cases.

1. Pure case (no disorder)

For the readers’ convenience, we summarize the results
of the Gaussian variational approximation for the two-
dimensional self-avoiding tethered membranes in d di-
mensions [20,21]. In this case, the equalities 0=a=w
hold and from (3.6) we obtain ®=8/d. This means that
the crumpled phases exist only at d >4 and the mem-
brane at d <4 is in the flat phase. In [20] more careful
discussions have been made in order that the Gaussian
variational approximation works for the polymer case.
However, their improvement results in that the two-
dimensional self-avoiding tethered membrane in four-
dimensions is in the crumpled phase, which contradicts
with the results of the numerical simulations [17,21].
Therefore, we shall not pursue such a direction.

2. Stress disorder only

In this case, Ag(g)=0, which means the up-down sym-
metry of the membrane. Then g,(k)=0 and the equality
o=a holds. We only need to consider Eq. (2.18). Intro-
ducing two positive constants c¢; and c¢,, we can write Eq.
(2.18) as



4—Zﬂ—a .

gx(k) 1=c k¥ P—c,k 3.7)

If 4—2Z #—a>2+9, then the disorder term becomes ir-
relevant and the infrared behavior is determined by the
self-avoiding term. That is, the self-avoidance completely
determines the behavior. Then, we can use the result of
the case of no disorder and we obtain w=8/d. We put
this result in the above condition to obtain the constraint
16

2—Z u > 7 .
Then we may ask what happens when the above con-
straint does not hold, that is, when 16/d 22—Z, and the
stress disorder becomes relevant. At first sight, the
second term in Eq. (3.7) determines the infrared behavior
of the membrane. However, this is not true. One should
note that the coefficient of the second term in Eq. (3.7) is
negative, implying the cancellation between the first term
and the second term. Physically speaking, the second
term comes from the stress disorder and the fact that it
becomes relevant means that the membrane tends to
shrink. Then the exponent of the first term in Eq. (3.7)
becomes smaller and the infrared behavior of the mem-
brane is determined by the condition that the exponents
of the first term and the second term become equal.
From this condition, we obtain

_ 6_Zu
T 24+dn2

(3.8)

a (3.9)

This suggests that even in the short-range disorder case
(Z,=0), » at d <8 is altered from the value 8/d of the
pure case to 6/(2+d /2). We see that the self-avoiding
tethered membranes with short-range stress disorder at
d >?2 are in the crumpled phase. This conclusion seems
to contradict the result that for 7 > 0 (short-range) stress
and spontaneous curvature disorders are irrelevant in the
flat phase of the membrane. It is not so. Our conclusion
means only that the self-avoiding tethered membrane
with short-range stress disorder is in the crumpled phase.
It does not exclude its transition to the flat phase. There-
fore, if the strength of the disorder is weak enough and
we increase the rigidity of the membrane, the phase tran-
sition to the flat phase may occur. In a previous work,
we gave a conjecture that the self-avoiding tethered mem-
branes with short-range stress disorder are in the flat
phase or in the crumpled-glass phase and they are not in
the crumpled phase. There we assumed that the stress
disorder is irrelevant even in the finite d case. This, how-
ever, does not hold, as we have seen above. We note that
in the long-range disorder case (Z, >0), the membrane
does not become flat even at d =2. It is a drawback of
the variational method.

3. Curvature disorder only

From Eq. (2.19) we find that a'=Zy +2a—2 and the
equality =6 holds, that is,
a=—4+

o, o=max(a,a’) . (3.10)

d
1+
2
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In the temperature-dominated phase (a>a’), we find
that «=a=8/d and the condition a>a’ reduces to
8/d <2—Zg. In the disorder-dominated phase (a'>a),
the equality o =a' holds and

4—(1+d /2N Zk —2) 3.11)

“ 1+d ' '

For the short-range curvature disorder (Zx =0), at d >4,
0=8/d and at d <4, w>a=(6+d)/(1+d)>2. This
means that the crumpled phases do not exist at d <4 and
the self-avoiding tethered membrane with short-range
curvature disorder at d <4 is in the flat phase. However,
long-range curvature disorder can destroy the flat phase.
For example, in the case Zy=1, o=a'=9/(1+d) at
d <8. From this we see that the self-avoiding tethered
membrane with long-range curvature disorder (Zx=1)
at d =4 can be in the crumpled phase.

4. General case

At first, we determine the value of the exponent a’. In-
troducing two positive constants d; and d,, we can write
Eq. (2.19) as

4—Z —a

krta—a—g kT g gt (3.12)

Then, if Zx>Z u +a’, the infrared behavior is deter-
mined by the first term of this equation and
a’'=Zy+2a—2. Inserting this value in the above condi-
tion, we obtain the constraint

0>Z,+2a—2. (3.13)
If Zy <Z u +a’, the second term determines the infrared
behavior. Since

fr+e—d g I (3.14)
we find that 2—Z u —2a=0. That is, the above con-
straint is not broken and the equality a’'=Zg+2a—2
holds always. However, as we shall see below, the con-
straint (3.13) is not necessarily conserved.

The process of determining the exponent « is essential-
ly the same as in the previous cases. The different phases
are characterized by whether the second term in Eq.
(3.7) (the contribution of the stress disorder) is relevant or
not and whether the phase is in the temperature-
dominated phase or in the disorder-dominated phase;
four cases are a priori possible.

(i) The first is the temperature-dominated (a>a') and
irrelevant stress disorder phase a=8/d,
a'=Zg+16/d—2. Then K(o)~o® This phase exists
for 16/d <2—Z, and Zx <2—8/d.

(ii) The next is the temperature-dominated (a > a’) and
relevant stress disorder phase a=(6—Z,)/(2+d/2),
o'=Zy+(8—d—2Z,)/(2+d/2). Then K(o)~o"
This phase exists for 16/d>2—2, and Zg <(d—2
+Z,)/(2+d /2).

(iii) Then there is the disorder-dominated (a <a’') and
irrelevant  stress disorder phase a=[6+d—(1
+d/2)Zg1/(14+4d), a'=(10—2Zg)/(1+d). Then
K(0) ~o®. This phase exists for Zy >10/(2+d)+(1
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+d)Z,/(2+d),Zx>2—8/d,and 8 —Z <2d.

(iv) Finally, there is the disorder-dominated (a <a’)
and relevant stress disorder phase a=[8+d—Z,
—(1+d/2)Z¢]/(3+d), a'=(Zx+10—2Z,)/(3+d).
Then K(o)~o®. This phase exists for Zg <10/(2
+d)+(1+d)Z,/(2+d), Zx>(d—2+Z,)/(2+d/2),
and Zy +4—2Z,<2d.

In Figs. 1 and 2 we summarize the phase diagrams of
the restricted cases of the general result. Figure 1 shows
the phase diagram of the crumpled phases in (d,Zy)
plane for the case of the short-range stress disorder
(Z,=0). The region where the above crumpled phases
do not occupy is considered to be the flat phase or the
crumpled-glass phase. Figure 2 shows the phase diagram
of the crumpled phases in (Z,,Zg) plane for the case
when the embedding dimension d is three. In Ref. [8] the
phase diagram of the flat phases and flat glass phases of
tethered membrane in (Z,,Z,) plane for d =3 case is
given. Our conclusion is that the tethered membrane
with disorder exponents (Z,,Z,) with no rigidity is in
the associated crumpled phase of Fig. 2. Following the
first scenario presented in the Introduction, when we in-
crease the rigidity of the membrane the phase transition
to the flat phases presented in the Ref. [8] or to the crum-
pled glass phase occurs, depending on whether the
strength is weak or strong. If we follow the second
scenario [8], the exponents (Z,,Zy ) must be larger than
the critical values in order that the phase transition to the
crumpled-glass phase occurs.

B. Large distance behaviors of the crumpled-glass
phases (short-range disorders)

In the crumpled-glass phase (¢70), we need to study
the saddle point equations (2.24) and (2.25). The analysis
proceeds in the same way as in the preceding subsection.
From Eq. (2.25) we find that the infrared behavior of
galk) is completely determined by the last term 24,9k 2,
Then, we have a'=2q, indicating that the membrane is

A

Bt//
6
(3>
/ =
(2 [ap

2 4 6 8 10 12 OL

FIG. 1. The crumpled phases of the self-avoiding tethered
membrane with short-range stress disorder (Z,=0) and long-
range curvature disorder with exponent Z; in d-dimensional
space: (1) temperature-dominated and irrelevant stress disorder
phase; (2) temperature-dominated and relevant stress disorder
phase; (3) disorder-dominated and irrelevant stress disorder
phase; and (4) disorder-dominated and relevant stress disorder
phase.

Zx

(%

1 2 3 4 S
Z/“

FIG. 2. The crumpled phases of the self-avoiding tethered
membrane with long-range stress disorder with exponent Z,
and long-range curvature disorder with exponent Zy in three-
dimensional space: (2) temperature-dominated and relevant
stress disorder phase; (3) disorder-dominated and irrelevant
stress disorder phase; and (4) disorder-dominated and relevant
stress disorder phase.

in the disorder-dominated phase (a>a’). This is very
natural because the membrane is in the crumpled-glass
phase and the infrared behavior is determined by the dis-
order of the ground state. With the above result
(o=a'=2a), the analysis can be done as in the stress dis-
order only case. We present the results. At d >3, the
stress disorder is irrelevant and o =8/(1+d). At d <3,
both the self-avoidance and the disorder are relevant.
However, o becomes larger than 2 and we believe that
the crumpled-glass phase does not exist at d <3. These
situations entirely coincide with the previous ones [23] by
changing y with d. The fluctuations of the spin-glass
operator does not modify the previous result in contrast
to the crumpled phases.

IV. DISCUSSIONS

In this paper we have studied the crumpled phases of
the self-avoiding tethered membrane with disorders. We
have shown that even a short-range stress disorder is
relevant at d <8 and the crumpled phase exists even at
2<d <4. This result is in contrast with the crumpled
phase of the phantom tethered membrane [5]. There, a
short-range stress disorder merely causes the membrane
to swell slightly and should not affect the universal prop-
erty. We have given the exponent for the radius of gyra-
tion. Furthermore, we have considered the case where
the disorders have long-range correlations. The
membrane’s behavior is characterized by whether the
stress disorder is relevant or not and whether the mem-
brane is in the temperature-dominated phase or in the
disorder-dominated phase. Specifying which phases the
membrane with the disorder exponents (Z,,Zx) in d di-
mensions belongs to, we have given the exponent for the
radius of gyration. The phase diagrams in two special
cases are presented (Figs. 1 and 2). We have also studied
the behavior of the crumpled-glass phase in the case of
short-range disorders. In this case, the contribution from
stress disorder can be seen as the fluctuations of the spin-
glass operator. This fluctuation does not modify the
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behaviors of the crumpled-glass phase. However, the
analysis is restricted to the replica symmetric solution
and the improvement is left for a future study.
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APPENDIX: THE GAUSSIAN APPROXIMATION
FOR SELF-AVOIDING TETHERED MEMBRANES

We shall discuss the Gaussian variational approxima-
tion [20,21,27] for the self-avoiding tethered membrane in
the flat phase. The self-avoidance is always considered to
be irrelevant when the membrane is in the flat phase.
This picture seems correct intuitively. However, if the
self-avoidance is irrelevant when the membrane is flat,
what makes the membrane flat? In order to answer this
question, we apply the Gaussian variational method to
the flat phase of the self-avoiding tethered membrane and
show the complete equivalence with the tethered mem-
brane with long-range interaction. When the membrane
is crumpled, it is well known [20,21] that the tethered
membranes with long-range force 1/r% in the large
embedding space dimension limit are equivalent to the
self-avoiding membranes in d dimensions in the variation-
al approximation. We show that this correspondence
remains to be correct even in the flat phase of the mem-
brane, namely, the self-avoidance is relevant even in the
flat phase of the membranes.

We consider the generalized Edwards model

H(X(0)]= [dP013,X3,X'
+u [dP0 [dPo'8%X (0)~X'(a")) . (A1)

The best quadratic Hamiltonian is determined by finding
an upper bound for the exact free energy 7,

The possibility of symmetry breaking suggests that X can
be decomposed into transverse (Goldstone) mode h(o)
and phonon modes u ‘(o) [20],

X(o)=[¢o'+u'(o)]e;+h(c), h-e;=0 (A3)

Thus the most general trial Hamiltonian, which is quad-
ratic in the fields, is

Fo= [ dPk {u'(— kg, (k)u'(k)+h(—k)g,(k)h(k)]) .
(A4)

As has been discussed in [21], the original Hamiltonian is
invariant under rotations in the embedding space. There-
fore, for £> 0, we must integrate over all possible ground
states in addition to the integrations over u‘(k) and h(k).
In other words, the average should be taken over all pos-
sible orientations of the flat phase and the average value
(X(0o)) will vanish. This is the most important point
when we carry out the Gaussian variational approxima-
tion.

The variational parameters are the kernels g,(k),g,(k)
and the flatness order parameter §{. The variational free
energy ¥,, which is an upper bound for %, is then given
by

F, =Fot (H—FHy)o - (A5)
Here we define the average ( 4 ), by

(4)= [DIX]e 0 4/2,,

—— (46)
and F, by

Fo=—InZ, . (A7)

The calculation of 7, is easy except the evaluation of a
term (u [dP0 [dPo'8%X(0)—X"(0’))),. We describe
it in some details. If we naively calculate the integration

- = — % Y
=—hz, Z f D[X]e : (A2 with the decomposition of X' in (A3), we obtain
|
D D_isd( yi i\ — D d%  ixo)-x0)
u [dPo [dPo'sU X (0)—X/(0")) =uLp [d°s W(e 4 Yo
0
=uLDdeaf d’%k ﬁ H (e .k"[u"(a)+ga"—u"(0)]+iki[hf(a)—hf<0)])0 (A8)
2m) 21 j=p+
I
For convenience, we introduce the following quantities: Then we find that Eq. (A8) is equal to
D/2
K, (a)—-— 2 ((u(a)—u'(0))?), f —§202/4Kl(a) T
i (21T)d K] (o)
= 1—cos(k-o) A9 (d—D)/2
I3 (2 )D[ T (k) (49 X | =T (A11)
J K,(o)
= J —hlJ 2
Ka(o) 2(d —D) ,_% - ((hlo)=h10))*)q From this equation we see in the phase with broken rota-
/ tional symmetry (£{70), the self-avoidance term becomes
= f [1—cos(k-0)]—— (A10) completely irrelevant. However, as discussed before, this
(27 )D (k) calculation is not correct because the above calculation
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destroys the rotational symmetry of the original Hamil-
tonian. In order to obtain the correct expression for this
thermal average, we have to average over the all possible
ground states. We return to the first expression of (A8)
and take the average over the ground states. The average
over the ground states means that we integrate the
vector X(o)—X(0) over a sphere with radius|

\/[X(a)—X(O)]Z. More precisely, one ground state cor-
responds to a point on the Grassmann manifold Gr(D,d),
and the above averaging procedure is not necessarily
correct. However, this difference only causes an overall
factor which is not essential. Therefore we replace the
average over the ground states with the average over the
sphere. Then

d
uLDdeaf d kd (eikX@)-XON) uLDdeof d [elkXe)=XON] (A12)
(2m) g (2m)
The average over the ground states [ ],  is calculated as
ik(X(0)—X(0)] — ik'nV/(X(a0)~X(0))?
[e o ]gs——fsd dne
_—_f i ldneilrn\/(X(a)—X(O))z
—fdnf+lwd)» AMn? 1), ik-nV (X(a)—X(0))?
=const X fdke—kZX(x”)_X(O”Z/‘”‘e"}‘ . (A13)
After rescaling the wave vector k, we obtain that Eq. (A12) is equal to
s
LdXConStX (e ~WX(X(0)=X(O)?/2) — D[ 4Py i (A14)
df f 27r)d o (2 )é f K(a)
where K (o) is defined by
K(0)=1{(X(0)—X(0))*);=1%*+DK (0)+(d —D)K,(0) . (A15)

When we calculate the thermal average { ), of the other terms in the variational free energy, we have to carry out the
average over the ground states in the same way. But this causes only an overall factor which is not relevant in the vari-
ational analysis and can be dropped. Then the variational free energy is evaluated as

f7v=i70+(7{—7{0)

d/2
1 d% k? k? u' T
=LP|—-Dg+ —1|+(d—D —1 |+ dP
2 6 f (2m)? | 2g,(k) ( )f 21r)d 2g,(k) } (2m)? f 7 K(o)
+Df lng,(k)+(d D)f lngz(k) (A16)

Taking the variational derivatives of the above free energy with respect to g,(k), g,(k), and { and setting the results
equal zero, we arrive at

1 d , d/2+1
=24 ¥ [aD d/apy .
gi(k)=—k>=2 (zv)dfd 7 %o (7)1 —cos(k-0)]
1 d , d/2+1

1,2 _a u D d/2rq .
g (k)= Sk =2 (zw)dfd A (m)?¥[1—cos(k-0)],
D d d/2+1

— ’ Tr

= deU Ko J a’. (A17)

From the last equation in (A17), we see that in the flat phase (£ > 0), k2 coefficients of g, (k) and g, (k) vanish. If we as-
sume that two propagators g, and g, are equal, we obtain essentially the same equation as in the work by Guitter and
Palmeri [20]. That is, the self-avoiding tethered membrane in d dimensions in the variational Gaussian approximation
is the same as the tethered membrane with long-range repulsive interaction (varying as 1/r?) in the large embedding
space dimension limit. We note that, considering the rotational symmetry of the Hamiltonian, we have taken the aver-
age over the ground states. This process is necessary because the phase space should also have the rotational symmetry.
However, this point may be controversial. A more convincing way of deriving the variational free energy (A16) is the
Legendre transformation, but this procedure is very involved.
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